Brazing of Aluminium Alloys withHigher Magnesium Content using Non-Corrosive Fluxes – Part 4

, ,

Technical Information by Leszek Orman, Hans-Walter Swidersky and Daniel Lauzon


For just as long as aluminium has been used for brazing heat exchangers, there has been a trend to down-gauging components for weight savings. The most common alloying element to achieve higher strength alloys for the purpose of down-gauging is magnesium. While magnesium additions are helpful in achieving stronger alloys, the consequence is a decrease in brazeability. This article discusses the mechanism of brazing deterioration with the addition of magnesium and proposes the use of caesium compounds as a way of combating these effects.

We split the article in five parts:

  1. Introduction
  2. Effects of Mg on the Brazing Process
  3. Mechanism of Magnesium Interaction with the Brazing Process
  4. Caesium Fluoroaluminates
  5. NOCOLOK® Cs Flux

Caesium Fluoroaluminates

Magnesium is an extremely reactive element and therefore even a small amount of oxygen will cause its oxidation. In standard brazing furnaces most often the level of oxygen in the furnace atmosphere at the temperature ranges below brazing could be relatively high. Thus the formation of magnesium oxides seems to be inevitable. On the other hand, one can think about neutralizing or inhibiting the formation of the poisoning potassium magnesium fluoride compounds mentioned earlier. The formation of those compounds can be reduced in the presence of caesium fluoroaluminate compounds

Caesium fluoroaluminates exist in several compositions and crystallographic states such as CsAlF4, Cs[AlF4 (H2O)2], Cs2AlF5, Cs2AlF5 H2O, Cs3AlF6. The Cs compound commonly used for aluminium brazing contains mainly CsAlF4 and is also known as CsAlF – Complex.

Cs acts as a chemical scavenger for Mg. During the brazing process, caesium reacts with magnesium to form compounds such as CsMgF3 and/or Cs4Mg3F10 [8]. These compounds melt at lower temperatures than the filler metal. As such these compounds do not significantly interfere with aluminium brazing and allow the flux to retain much of its oxide dissolution and wetting capability.

The caesium fluoroaluminate complex has a low melting range (420 – 480°C), a high water solubility (~20 g/l at 20°C), and contains between 54 – 59 % of elemental caesium. Though there are literature references for using the pure Cs-complex as a brazing flux [9], the chemical characteristics present practical problems when one would like to replace standard NOCOLOK® Flux with pure caesium fluoroaluminates complex. The low melting range means that under normal CAB process conditions the flux would essentially dry out by evaporation before reaching the brazing temperature (~ 600oC). Furthermore, the high content of Cs makes it prohibitively expensive as a replacement for standard NOCOLOK® Flux.

However the Cs complex does find a use in several applications such as flame and induction brazing and as a key component of flux paste formulations for specialty alloys. In some processes, mainly flame brazing of copper and aluminium, this complex is the state of the art [10].

Aluminium and copper form a low melting eutectic (546°C). This means that it is not possible to braze copper and aluminium in a CAB process using standard filler metal alloys having a melting range from 577°C to 605°C. It is however possible to join aluminium and copper by flame brazing, but it requires high degree of temperature control and a lower melting filler alloy is recommended. Zinc-aluminium alloys are commonly used for such applications. Lower melting range filler alloys require lower melting range fluxes and since flux consumption for flame brazing is relatively low, it is economically feasible to use a caesium fluoroaluminate complex such as CsAlF4.

Download the complete article as a PDF-File.


  1. S. W. Haller, “A new Generation of Heat Exchanger Materials and Products”, 6th International Congress “Aluminum Brazing” Düsseldorf, Germany 2010
  2. R. Woods, “CAB Brazing Metallurgy”, 12th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, NOVI, Michigan U.S.A. 2007
  3. T. Stenqvist, K. Lewin, R. Woods “A New Heat-treatable Fin Alloy for Use with Cs-bearing CAB flux” 7th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, NOVI, Michigan U.S.A. 2002
  4. R. K. Bolingbroke, A. Gray, D. Lauzon, “Optimisation of Nocolok Brazing Conditions for Higher Strength Brazing Sheet”, SAE Technical Paper 971861, 1997
  5. M. Yamaguchi, H. Kawase and H. Koyama, ‘‘Brazeability of Al-Mg Alloys in Non Corrosive Flux Brazing’’, Furukawa review, No. 12, p. 139 – 144 (1993).
  6. A. Gray, A. Afseth, 2nd International Congress Aluminium Brazing, Düsseldorf, 2002
  7. H. Johansson, T. Stenqvist, H. Swidersky “Controlled Atmosphere Brazing of Heat Treatable Alloys with Cs Flux” VTMS6, Conference Proceedings, 2002
  8. U. Seseke-Koyro ‘‘New Developments in Non-corrosive Fluxes for Innovative Brazing’’, First International Congress Aluminium Brazing, Düsseldorf, Germany, 2000
  9. K. Suzuki, F. Miura, F. Shimizu; United States Patent; Patent Number: 4,689,092; Date of Patent: Aug. 25, 1987
  10. L. Orman, “Basic Metallurgy for Aluminum Brazing”, Materials for EABS & Solvay Fluor GmbH 11th Technical Training Seminar – The Theory and Practice of the Furnace and Flame Brazing of Aluminium, Hannover, 2012
  11. K. Suzuki, F. Miura, F. Shimizu; United States Patent; Patent Number: 4,670,067; Date of Patent: Jun. 2, 1987
  12. J. Garcia, C. Massoulier, and P. Faille, „Brazeability of Aluminum Alloys Containing Magnesium by CAB Process Using Cesium Flux,“ SAE Technical Paper 2001-01-1763, 2001
0 Kommentare

Hinterlasse einen Kommentar

An der Diskussion beteiligen?
Hinterlasse uns deinen Kommentar!

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht.